THORACIC SURGERY DIRECTORS ASSOCIATION BOOT CAMP
SEPTEMBER 12-15, 2019
SECTION: CORONARY AND VASCULAR ANASTOMOSIS

Course Director: James Fann, MD

Anastomosis Faculty
Leora Balsam, MD John Ikonomidis, MD
Castigliano Bhamidipati, DO Doug Johnston, MD
Mani Daneshmand, MD Frank Manetta, MD
James Edgerton, MD Daniel Rinewalt, MD
Eugene Grossi, MD Paul Tang, MD
John Hammon, MD Brittany Zwischenberger, M.D.

TSDA Staff
Beth Winer
Rachel Pebworth

Location
William and Ida Friday Center for Continuing Education
University of North Carolina, Chapel Hill
SYLLABUS

OVERVIEW
The Boot Camp is an intensive course in selected technical and cognitive components of cardiothoracic surgery. Designed for the first-year traditional and upper level integrated cardiothoracic surgery resident, the Boot Camp provides an environment to understand and practice techniques and parts of procedures performed in the operating room.

Surgery requires the synthesis of technique and cognition, and mastery of the basic technical skills early in one’s training will allow the resident to appreciate the complex intellectual components of cardiothoracic surgical procedures. In this coronary and vascular anastomosis section, we focus on techniques of coronary and vascular anastomosis including instrument use and tissue handling based on a didactic lecture, task stations and wet-lab. The didactic component emphasizes the background and strategies during coronary artery bypass grafting, including discussions on the preferences of the Boot Camp faculty recognizing inter-institutional, as well as intra-institutional, differences. The part-task approach to cardiac surgery training in the dry-lab and wet-lab settings will provide initial training and a basis for ongoing deliberate practice. Not surprisingly, in skill acquisition and retention, dedicated practice distributed over time results in markedly improved performance compared to a single intensive practice session.

This course will also allow the faculty and resident to identify and correct areas of weakness in technique. Our goal is to provide the resident with an understanding of the technical aspects of the surgical procedure, followed by direct supervision and formative feedback.

GOALS

Content
To understand the goal and rationale for various anastomosis techniques
To know the sequence of events in small and large vessel anastomosis

Skills
To establish competency in coronary/vascular anastomosis using partial task trainer and porcine model
PROGRESS

Formative assessment
 Assessment of the resident’s progress with formative feedback
 Evaluate surgical skills using part-task trainer and porcine model

Structured sessions
 Four-hour session dedicated to anastomosis training.
 Instrument use
 Graft preparation: vein and arterial
 Arteriotomy: epicardial and intramyocardial
 Different techniques of coronary anastomosis
 Large vessel anastomosis
 Graft assessment

FEEDBACK

The resident will receive guidance and formative feedback from the faculty during the anastomosis exercises. Likewise, the resident is encouraged to provide feedback regarding the perceived relevance of the assignments. For instance, feedback may include perceived value of the tasks, difficulty of the tasks, perceived improvement and progress, and change in level of comfort performing the procedures.
COURSE OUTLINE
Coronary Anatomy Review:
Angiography Review:
Techniques:
Intraoperative graft patency assessment:

Palpation: Not reliable; subjective.

Doppler probe: Not reliable; subjective.

Epicardial ultrasound with Doppler: Demonstrates flow velocity but not volume of flow; limitations include probe positioning, motion artifacts, flow velocity profile, and vessel diameter.

Transit time flow measurement (“flow probe”): Data include flow curve, mean flow, pulsatility index, and percentage of backward flow. Different size probes are available (e.g., 2 mm, 3mm, 4mm). Limitation: this method may prompt unnecessary graft revision.

SPY system (Novadaq Technologies): Imaging is based on fluorescence of indocyanine green (ICG), a nontoxic dye; it provides real-time images. When illuminated with 806-nm light, ICG fluoresces and emits light at 830 nm. The fluorescent light is captured by a charged couple device video camera at 30 fps and displayed on monitor. Limitations: it cannot quantify the amount of flow and is influenced by surrounding soft tissue.

Intraoperative angiography: Large instrumentation, contrast injection, long operating time, and high cost.
Example of transit time flow measurement:

I. Measuring Graft Flow

Accurate measurements are technique dependent.

- Select a flowprobe sized so that the graft will fill at least 75% of the lumen of the probe. Probe should not compress the graft.
- Fill probe window with ultrasound gel.
- Position probe on graft (not over metal clips or fascia).
- Measure graft flow with occlusion of the native coronary artery to establish maximal flow conditions for the graft.
- When flow reading is stable (10-15 seconds), press PRINT. Leave probe on graft until printer stops.

II. Does Mean Flow Confirm Graft Patency?

✓ Normal Mean Flow per table below = Patent Graft
✓ Medium Range Flows
 Does flow exhibit the expected pattern? (TV, on right)
 Evaluate other factors that may lower flow, (N, below)
✓ Mean Flow < 5 ml/min = Graft in Trouble

<table>
<thead>
<tr>
<th>Graft Location</th>
<th>Normal Flow Range</th>
<th>Questionable Flow (requires further tests & diagnosis)</th>
<th>Obstructed Flow (graft with mechanical problem)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIMA → LAD</td>
<td>>27 ml/min</td>
<td>27-5 ml/min</td>
<td>5 or less</td>
</tr>
<tr>
<td>HMA → RCA</td>
<td>>29 ml/min</td>
<td>29-5 ml/min</td>
<td>5 or less</td>
</tr>
<tr>
<td>SVG → RCA</td>
<td>29 ml/min</td>
<td>29-5 ml/min</td>
<td>5 or less</td>
</tr>
<tr>
<td>SVG → OMA, OMA</td>
<td>>21 ml/min</td>
<td>21-5 ml/min</td>
<td>5 or less</td>
</tr>
<tr>
<td>SVG → PDA, PDA</td>
<td>>20 ml/min</td>
<td>20-5 ml/min</td>
<td>5 or less</td>
</tr>
<tr>
<td>SVG → CX</td>
<td>>18 ml/min</td>
<td>18-5 ml/min</td>
<td>5 or less</td>
</tr>
</tbody>
</table>

1 mean pump readings are typically 50% below off-pump readings.
2 The normal range is average minus one standard deviation of the reported readings.

Is Pulsatility Index (PI) between 1 & 5?

(Check flow printout.) A PI over 5 is generally associated with low mean flow and systolic-dominant flow pattern indicating that the graft should be reexamed.

III. Examine Graft

- With probe on the graft, engage FlowSound. Listen for an increase in the pitch as adjustments are made to the graft (1 octave pitch 1 = 4 x ↑ in flow).
- Look for kinks, twists in the graft, low MAP, vasospasm. Redo anastomosis if indications point to technical error.

IV. Analysis of Other Factors

- Vasospasm of Arterial Grafts
- Small target vessel or small patient?
- Small graft capacity
- Poor runoff

Coronary Graft Patency Assessment Protocol

IIIa. Flow Waveform Analysis

For graft flows in the "questionable range," the quality of the graft is evaluated from the systolic/diastolic waveform properties, using FlowSound or a printout. The systolic and diastolic phases are identified in the printed waveform by the following rule of thumb: the systolic lasts one-third of a heart beat and diastolic lasts two-thirds.

Diastolic-Dominant Pattern

For left ventricle grafts, the lesser peak is usually systolic, and the higher, broader peak is diastolic (Fig. 1). The exception occurs in the presence of severe tachycardia when the duration of diastole is shortened. An acceptable left ventricular graft waveform is "diastolic dominant" with the delivered diastolic blood volume [i.e., area under diastolic curve] exceeding the delivered systolic blood volume.

Balanced Systolic/Diastolic Pattern

In grafts to the right ventricle, flow is more equally distributed between the systolic and diastolic phases. This produces a flow waveform where the systolic peak may dominate but is followed by a proportionally strong diastolic flow producing a systolic/diastolic balanced waveform (Fig. 2).

Stenotic Pattern

In stenotic grafts, the systolic peak dominates the off-pump flow profile and is associated with low or zero-mean flow. Often, systolic charge flow flows backwards as a negative flow during diastole (Fig. 3).

50.00

SVG - RCA

30.00

20.00

10.00

0.00

100.00

LIMA - LAD

50.00

30.00

10.00

0.00

100.00

Fig. 1: Mean = 24 ml/min; Diastolic dominant; PI = 1.3

Fig. 2: Mean = 24 ml/min; systolic/diastolic balanced; PI = 1.8

Fig. 3: Mean = 9 ml/min; Systolic profile dominant; PI = 16

Reference: Flow-Based Intraoperative Coronary Graft Patency Assessment

Transonic Systems Inc.
Tel: 800-363-3569 (USA); Fax 607-257-7256, www.transonic.com
Europe: Tel: 31 43 407 7200; e-mail: info@transonic.nl; Fax: 31 43 407 7201

Copyright Transonic Systems, Inc. 2002
TN MHI 5/02, Printed in the USA
PARTIAL TASK TRAINER PROCEDURES

Coronary anastomosis

1. Mount the synthetic vessel (“target”) on the anastomosis task station.
2. Make “arteriotomy” using small scissors.
3. Anastomose graft to the target vessel using continuous 5-0 or 6-0 polypropylene.
4. Assess the anastomosis.
5. Repeat and perform additional anastomoses using same target vessel.

WET-LAB PROCEDURES

Porcine Heart Model

Tasks:
1. Evaluate the coronary anatomy.
2. Create an arteriotomy in the mid LAD using #15 blade or Beaver knife.
3. Perform vein (tissue or synthetic) to coronary artery anastomosis with 6-0 or 7-0 polypropylene suture.
4. Assess anastomosis and repeat.
5. Identify OM and PDA and perform anastomoses if possible.
6. Partially transect the aorta (300 deg) leaving the posterior aspect intact to facilitate orientation and reapproximate with 3-0 or 4-0 polypropylene suture.

7. Partially transect the pulmonary artery and reapproximate with 4-0 polypropylene suture.
REFERENCES

