THORACIC SURGERY DIRECTORS ASSOCIATION
BOOT CAMP
JULY 25-28, 2013

SECTION: LUNG

Thoracic Faculty

Richard Feins, MD (program director) University of North Carolina
Jon Nesbitt, MD (course director) Vanderbilt University
Carolyn Jones, MD (course director) University of Rochester
Manjit Bains, MD Memorial Sloan-Kettering Cancer Center
D. Pat Burney, MD Senior Tour
Mark Ferguson, MD University of Chicago
Sean Kwon, MD Long Island Jewish
Mark Onaitis, MD Duke University
Lana Schumacher, MD Allegheny General Hospital
Norman Snow, MD Senior Tour
Mithran Sukumar, MD Oregon Health & Science University
Darryl Weiman, MD MD Anderson
Walter Wolfe, MD Senior Tour
Stephen Yang, MD Johns Hopkins University

TSDA Staff

Beth Winer Rachel Pebworth
Executive Director Senior Coordinator

Location

William and Ida Friday Center for Continuing Education
University of North Carolina, Chapel Hill
Thoracic Surgery Directors Association
Boot Camp

General Thoracic Surgery
Syllabus

LUNG

Overview

The TSDA Boot Camp will be an introduction course of technical skills needed in cardiothoracic surgery. This program is designed for first year cardiothoracic surgical residents who are currently enrolled in ACCME approved programs in the United States. The Boot Camp will allow the resident to practice techniques and learn sequence of events needed to complete basic general thoracic procedures in the operating room.

To succeed in general thoracic surgery it is necessary to combine a detailed anatomical knowledge and precise technical skills. In this section on lung resection, we will focus on the techniques of hilar dissection and lymph node removal in preparation for performing a lobectomy first in a dry lab station and then in the wet lab. The resident will perform a segmentectomy and lobectomy with complete lymph node dissection in a perfused animal model. The didactic session will review the normal anatomy of the lung with regards to the pulmonary artery and veins and bronchus and discussion of sequences of events needed to perform anatomical resections of the lung - lobectomy and segmentectomy safely.

This course will also allow the faculty and resident to identify and correct areas of weakness in technique. Our goal is to provide the resident with an understanding of the technical aspects of an anatomical lung resection, followed by direct supervision and practice, and concluded with formative feedback.

Course Schedule

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Wet Lab (Left Lung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet Lab (Left Lung)</td>
<td></td>
</tr>
<tr>
<td>Wedge excision tumor</td>
<td></td>
</tr>
<tr>
<td>Left upper lobectomy</td>
<td></td>
</tr>
<tr>
<td>Hilar and mediastinal lymph node dissection</td>
<td></td>
</tr>
<tr>
<td>Left superior segmentectomy</td>
<td></td>
</tr>
</tbody>
</table>
Goals

Content
To understand the rational for various lung resections and lymph node dissection
To understand the anatomy of the lung (pulmonary arteries, veins and bronchi) for the basis of anatomical resections
To learn the sequence of events to perform an anatomical and non-anatomical resection of the lung
To learn the technique of mediastinal and hilar lymph node dissection
To identify and correct areas of weakness in technique and judgment

Skills
To establish competency in open lung resections in the dry and wet lab
To establish competency in open lymph node dissection in the dry and wet lab

Program

Formative Assessment
Assessment of resident’s progress with formative feedback
Evaluate surgical skills using the wet-lab
Video recording and review of surgical skills

Structures Sessions
Four hour session dedicated to lung resection and lymph node dissection
Open approach
Instrument use and selection
Anatomy recognition and knowledge
Hilar dissection and isolation of pulmonary vessels
Bronchial dissection and stapling
Fissural dissection and stapling
Stapler use and selection
Dry lab performance
Wet-lab performance
Procedures
Wedge excision
Segmentectomy
Lobectomy
Mediastinal and hilar lymph node dissection

Feedback
The resident will receive guidance and formative feedback from the faculty during the dry and wet lab experience. Also, the resident will be able to provide feedback regarding the perceived relevance of the assignments and the validity of the tasks.
Normal Lung Anatomy

Right Hemithorax
RIGHT LUNG, ANTERIOR OBLIQUE VIEW

We can see the bronchus to the right upper lobe with its trifurcation and its arterial blood supply. The posterior arterial branch to the posterior segment of the right upper lobe can be seen as it comes from the pulmonary artery caudad to the right upper lobe takeoff, rather near the longitudinal fissure. It moves posteriorly and cephalad to supply the posterior segment. This artery branch has to be looked for. It is sometimes hard to dissect and can be a source of trouble to the surgeon. The superior pulmonary vein is well seen anteriorly. The spatial configuration of the bronchi and arteries are shown, whereas the inferior pulmonary vein is seen as a main channel only.
Right Lung - Lateral View

- Apical segmental a., right upper lobe
- Anterior segmental a., right upper lobe
- Superior segmental a., right lower lobe
- Right middle lobe v. draining into superior pulmonary v.
RIGHT LUNG, POSTERIOR VIEW

The fissure outlining the superior segment of the right lower lobe comes up quite high since this is a rather voluminous segment. The anatomy of the bronchus is seen. The cartilaginous horseshoes all face forward with their open hoops posteriorly connected by the membranous portion. This means that one has always to exercise more care in dissecting the thin posterior membranous portion of the tracheobronchial tree than the tougher anterior-cartilagenous portion of the tracheobronchial tree. It is relatively clearly shown how one can approach from posteriorly the right upper lobe bronchus since the arterial and venous supplies to the right upper lobe are primarily anterior to this lobe. It can also be seen that the main pulmonary artery runs lateral and anterior to the bronchus down the lung. The inferior pulmonary vein is primarily caudal to the bronchus intermedius. As already mentioned, these veins drain from the intersegmental planes and tend to be caudal to the bronchi in this location.
Left Hemithorax
Left Lung – Anterior View

- Left mainstem bronchus
- Left pulmonary a.
- Superior pulmonary v.
- Inferior pulmonary v.
- Apical posterior segment, left upper lobe
- Anterior segment, left upper lobe
- Lingula
- Left lower lobe bronchus
LEFT LUNG, LATERAL VIEW

This is the lateral view of the left lung. The artist has drawn in the standard anatomy which the surgeon should be familiar with and look for. As one opens the longitudinal fissure, the structure seen first is the main pulmonary artery. Here one can see the lingular artery branch, which runs anteriorly in the lowest portion of the left upper lobe. There is a more proximal arterial branch going up to the anterior segment and a branch to the posterior segment. As mentioned already, these branches are variable. The superior segmental branch can be seen running to the superior segment of the left lower lobe. The bronchus is very hard to expose in this area until the necessary branches of the pulmonary artery are divided so that the bronchus can be uncovered. The left upper lobe bronchus with its inferior division lingula and superior division containing the rest of the upper lobe segments is clearly seen. The superior segmental bronchus and then the continuation into the left lower lobe basal segmental bronchus are also seen. The inferior pulmonary vein is hidden and is not readily visible in this approach, although one can see some of it slightly anterior and caudal to the bronchus.
LEFT LUNG, POSTEROLATERAL VIEW

In this view we see the hilar anatomy from the rear. Here the pulmonary artery is seen to be the highest portion of the hilum. Caudal to that in roughly the same plane is the left mainstem bronchus. The tracheal carina is rather high near the aortic arch in this approach. The inferior pulmonary vein can be well seen here since it is in the same plane as the bronchus and caudal to it. The various branches of the upper lobe and lower lobe bronchi are well depicted. The surgeon should be very familiar with the standard anatomy in any approach to the lung but should be alert for anatomic variations, which are all too common.
SESSIONS

Total of 4 – Four hours each

4 stations (tables)

8 residents in each session (2 per table)
 4 instructors in each session (1 per table)

Dry Lab Procedure (Right Lung)

 Hilar dissection
 Isolation pulmonary arteries and veins
 Isolation of bronchi
 Dissection and identify of segmental anatomy

Wet Lab Procedure (Left Lung)

Thoracotomy

 Lung palpation (nodule location)
 Wedge excision
 Segmentectomy
 Lobectomy
 Hilar and mediastinal lymph node dissection
References

